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A B S T R A C T

Subseasonal-to-seasonal (S2S) precipitation forecasting is crucial for hydrological modeling; however, its accu
racy often falls short of the requirements for hydrological forecasts, necessitating post-processing. A novel 
improved version of the Double Machine Learning (DML) method, termed Probabilistic Double Machine Learning 
(PDML), is proposed for ensemble post-processing of S2S forecasts. The new PDML method extends the classifier 
from binary classification to multi-class classification, improves the regressor from single-value output to 
probability distribution output, and combines the classifier and regressor based on total probability theorem. 
PDML not only quantifies uncertainty through ensemble output but also provides additional consideration for 
extreme precipitation events in the classification and regression progress. Various machine learning methods are 
compared within the PDML framework, including the state-of-the-art Kolmogorov-Arnold Networks. The results 
indicate that deep learning models based on Recurrent Neural Networks (RNN) and the U-NET architecture 
perform the best within the PDML framework. It achieves post-processing of S2S forecasts across different 
timescales and outperforms the statistical Ensemble Pre-Processor (EPP) method. On average, it improves the 
original forecast’s correlation coefficient, critical success index, and root mean square error by 85.8 %, 294.6 %, 
and 45.3 %, respectively, and achieves an 8.6 % improvement on the continuous ranked probability score 
compared to EPP. The results demonstrate that PDML can effectively perform ensemble post-processing of 
precipitation forecasts across different timescales, quantify uncertainty, and facilitate further hydrological 
modeling.

1. Introduction

The subseasonal-to-seasonal (S2S) forecasts, mainly spanning time
scales from two weeks to one season, have significant potential to 
augment existing weather and climate services and products. This 
forecasting framework demonstrates considerable applicability across a 
range of sectors, including public health, agriculture, water resource 
management, disaster mitigation, renewable energy and utilities, and 
emergency management and response (White et al., 2022). Besides, S2S 
forecasts present a valuable opportunity for numerous industries, facil
itating the ability to engage in systematic planning within this novel 
time horizon (White et al., 2017). Among these, precipitation is the most 
important atmospheric component of the hydrologic cycle and perhaps 
the most important and primary input to most hydrological models that 
are employed for planning, design, and operation of water resource 
projects (Duan et al., 2019). Precipitation forecasts is crucial for hy
drological research, including flood and drought prediction, as well as 

hydrological system modeling (Chen et al., 2024; Luo et al., 2024; Ye 
et al., 2017).

The S2S forecasting is influenced both by atmospheric initial con
ditions and by slowly evolving boundary conditions, distinguishing it 
from short-term numerical weather prediction (NWP) and from long- 
term global circulation models (GCM) (L. Zhang et al., 2023). Due to 
the unique nature of the S2S timescale, the memory of atmospheric 
initial conditions is largely lost, while the variability of the ocean has yet 
to exert a strong influence. This results in a lack of predictability for S2S 
forecasts, which have long been in a forecasting gap, often referred to as 
a “predictability desert” (Vitart, 2014; Vitart et al., 2017). Currently, the 
accuracy of S2S precipitation forecasts is insufficient to meet practical 
demands as verification studies have identified two major shortcomings: 
a rapid increase in bias as the forecast lead time increases, and inade
quate capability to predict extreme precipitation events (Liu et al., 2023; 
Rivoire et al., 2023; Lujun Zhang et al., 2021).

The S2S precipitation forecasts with systematic bias and dispersion 
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errors must undergo post-processing to improve accuracy before being 
applied to hydrological simulations (Li et al., 2017; Manzanas et al., 
2019). Kolachian and Saghafian (2019) tested two post-processing 
methods, quantile mapping (QM) and Bayesian model averaging 
(BMA), for S2S precipitation forecasts, and found that the BMA method 
outperformed QM. Li et al. (2023) adjusted the QM method for the S2S 
timescale and proposed an improved version called quantile mapping of 
matching precipitation threshold by time series (MPTT-QM) method. 
Specq and Batté (2020) developed a statistical-dynamical scheme within 
a Bayesian framework, which demonstrated more reliable calibration 
results compared to the original forecast for large-scale climate phe
nomena such as El Niño-Southern Oscillation (ENSO) and Madden 
Julian Oscillation (MJO). Huang et al. (2022) used a seven-parameter 
Bernoulli-Gamma-Gaussian model to calibrate S2S precipitation fore
casts, improving reliability and yielding forecast skill for daily and 
accumulated precipitation. In addition to the aforementioned statistical 
methods, recent years have seen machine learning (ML) and its subfield, 
deep learning (DL) methods, demonstrate significant potential within 
precipitation forecast post-processing. ML methods employed in pre
cipitation forecast post-processing offer several key advantages: 1) 
Flexibility in modeling nonlinear relationships between input variables 
and output predictions, enabling the extraction of meaningful infor
mation from multivariate datasets; 2) No need for stringent assumptions 
regarding the underlying data distribution; 3) A well-established 
research ecosystem and established frameworks that facilitate prac
tical implementation (Oliveira et al., 2023; Zhang and Ye, 2021). 
Numerous studies have demonstrated the feasibility of various machine 
learning algorithms in precipitation forecast post-processing, such as 
random forests (RF) (Herman and Schumacher, 2018; Mao and Sorte
berg, 2020; Vitart et al., 2022), support vector machines (SVM) (Ortiz- 
García et al., 2014; Yin et al., 2023, 2022), Long Short-Term Memory 
Networks (LSTM) (Chen et al., 2022; Li et al., 2021; Ni et al., 2020), 
Convolutional Neural Networks (CNN) (Li et al., 2022; Lyu et al., 2024, 
2023; Vitart et al., 2022; Weyn et al., 2020), and other related works.

In addition to improvements in algorithms, a new machine learning 
framework, Double Machine Learning (DML), has been gaining 
increasing popularity in the post-processing of precipitation data in 
recent years (Ling Zhang et al., 2021). The DML approach modifies the 
conventional single-regression framework in machine learning-based 
post-processing by initially employing a classifier to categorize the 
precipitation into its respective levels, prior to the application of a re
gressor. Subsequently, the outcomes of both the classifier and the re
gressor are integrated, typically with the classifier’s results superseding 
those of the regressor, to produce the final forecast. This methodology 
has been validated in the calibration of various precipitation products, 
demonstrating its feasibility (Lei et al., 2022; Lyu and Yong, 2024; 
Senocak et al., 2023; Xiao et al., 2022). Several studies have confirmed 
that DML, compared to the traditional single-regression ML approach, 
can lead to further performance improvements (Kossieris et al., 2024; 
Ling Zhang et al., 2021). However, this framework remains in infancy 
and still presents certain limitations, necessitating further exploration 
and development.

There are two main shortcomings in the existing research on DML, in 
our view. First, most studies have limited the classifier to a binary 
classification, i.e., determining whether precipitation occurs or not (Lei 
et al., 2022; Lyu and Yong, 2024; Xiao et al., 2022; Ling Zhang et al., 
2021). In Senocak et al.(2023), an attempt was made to extend the bi
nary classification to a multi-class classification, while the method used 
involved passing the classifier’s output as an additional feature to the 
regressor, thereby overlooking the potential negative impact of classi
fication errors. Second, to the best of our knowledge, almost all DML 
studies have opted for a single-value forecast output. While determin
istic results are simpler, they fail to capture the inherent uncertainty 
associated with the predictions (Klotz et al., 2022; Wang, 2001; Zhang 
et al., 2022). Therefore, we believe it is necessary to design a probabi
listic post-processing method for the DML framework, which not only 

quantifies uncertainty but also provides more comprehensive reference 
information for decision-makers (Scheuerer et al., 2020; Tao et al., 2014; 
Y. Zhang et al., 2023).

In this study, we propose a new Probabilistic Double Machine 
Learning (PDML) method for post-processing S2S precipitation fore
casts. Compared to DML, the new PDML method extends the classifier 
from binary classification to multi-class classification, improves the re
gressor from single-value output to probability distribution output, and 
combines the classifier and regressor based on total probability theorem. 
Under the new framework, uncertainty can be quantified through the 
ensemble forecasts output, and the ability to identify extreme precipi
tation is enhanced by distinguishing extreme precipitation mappings. 
Within the PDML, we compare five different machine learning algo
rithms, including four commonly used algorithms and a recent devel
oped Kolmogorov-Arnold Networks (KAN) algorithm, with an improved 
version of statistical method Ensemble Pre-Processor (EPP) also 
included as a benchmark for comparison (Li et al., 2019; Liu et al., 
2024). Moreover, an interpretability analysis of the PDML model was 
conducted to understand the impact of features on the output parame
ters, which has not been achieved in DML studies. The structure of the 
subsequent sections is as follows: Section 2 introduces the data used in 
this study; Section 3 presents the post-processing methods and evalua
tion metrics employed, as well as the interpretability analysis methods; 
Section 4 displays the research results and provides a discussion; Section 
5 concludes the paper.

2. Data

2.1. Study area

The study area is defined as the mainland China, encompassing the 
longitudinal range of 73◦ E to 135◦E and the latitudinal range of 18◦ N to 
53◦ N. The annual average precipitation in mainland China is 607 mm/ 
a. Most of mainland China is controlled by a monsoon climate, with 
precipitation showing significant seasonal variation.. The spatial dis
tribution of annual average precipitation and the monthly average 
precipitation process curve in mainland China are shown in Fig. 1. It can 
be observed that precipitation in mainland China exhibits significant 
spatial and temporal distribution disparities, which imposes higher de
mands for accurate precipitation forecasts.

Fig. 1. Study area map with distribution of the annual precipitation in main
land China (mm/a) with the bar chart showing the monthly average precipi
tation in mainland China (mm/month).
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2.2. Forecast data

The forecast data used in this study is derived from the CAS-FGOALS- 
f2-V1.3 forecasting model developed by the Institute of Atmospheric 
Physics, Chinese Academy of Sciences (IAP-CAS). This model was 
incorporated into the Sub-seasonal to Seasonal Prediction Project on 
January 5, 2021, and has since been providing operational forecasts and 
reporting data (Vitart et al., 2017).

We utilized the reforecast data from 1999 to 2018, ensuring that the 
model version remained unchanged throughout this period. In addition 
to the precipitation (PRE) control forecast data, other auxiliary variables 
were also incorporated into the ML approach, including the geopotential 
height (GH), specific humidity (SH), and temperature (T) control fore
cast at three different pressure levels (200 hPa, 500 hPa, and 850 hPa), 
which means that a total of 10 features are used (PRE, GH200, GH500, 
GH850, T200, T50, T850, SH200, SH500, SH850). These auxiliary 
variables have been demonstrated to be effective in previous studies 
(Lyu et al., 2023). The forecast data has a spatial resolution of 1.0◦ ×

1.0◦ and a forecast period of up to 65 days with a reforecast frequency of 
daily. To comprehensively compare the performance of the PDML al
gorithm, we tested eight different lead periods, including four daily 
precipitation scales (forecast periods of day 1, day 2, day 3, and day 4) 
and four accumulated precipitation scales (forecast periods of 1–7 days, 
8–14 days, 15–30 days, and 31–60 days, averaged).

The reasons for selecting this model are as follows: 1) The IAP-CAS 
model provides daily reforecast data, which significantly increases the 
available data volume by more than three times compared to the 
ECMWF reforecasts, which typically has a biweekly frequency. In 
comparison to the NCEP reforecasts, which also provides daily data but 
covers only 11 years, the IAP-CAS reforecasts offer a 20-year dataset. 
Although the focus of this study is not on the sensitivity analysis of 
machine learning algorithm performance with respect to sample size, we 
still chose the forecast model with the largest sample size to compare 
different machine learning algorithms. A larger sample size is generally 
expected to yield more robust results and greater performance im
provements in data-dependent post-processing methods like ML 
(Fassnacht et al., 2014; Moghaddam et al., 2020); 2) The IAP-CAS model 
has maintained a consistent version throughout the complete fixed 
reporting period, ensuring a stable forecast-to-observation mapping 
relationship.

2.3. Observation data

The precipitation product CN05.1, generated through optimal 
interpolation based on daily observation data from over 2,400 national 
meteorological stations provided by the National Meteorological Infor
mation Center, was selected as the reference data (Xu et al., 2009). This 
dataset is extensively utilized in precipitation research focused on 
mainland China, including applications such as trend analysis, model 
validation, and forecast post-processing (Liu et al., 2023; Lyu et al., 
2024; Wu et al., 2017).

The original spatial resolution of the CN05.1 data is 0.25◦ × 0.25◦, 
which is upscaled to 1.0◦ × 1.0◦ using spatial averaging to match the 
resolution of the forecast data. After standardizing the spatial scale, 
there are a total of 1,068 grid points across mainland China. The tem
poral resolution is daily, and we aligned it with the different lead time of 
the forecast data.

3. Methods

3.1. Probabilistic Double Machine learning structure

The Probabilistic Double Machine Learning (PDML) method aims to 
combine machine learning classifiers and regressors in the form of 
probability distributions to correct the raw forecasts, thereby generating 
precipitation forecasts with higher accuracy and lower error. The 

technical approach of this method is illustrated in Fig. 2.
The three main improvements of PDML over DML are: 1) It replaces 

binary classification with multi-class classification and generates prob
abilities instead of deterministic results, by doing so can extreme pre
cipitation events be considered; 2) The regressor uses probabilistic 
output to obtain a statistical distribution rather than a single value 
output, which allows to quantify the uncertainty; 3) PDML integrates 
classifiers and regressors in a probabilistic framework, consistent with 
the mathematical principles of total probability theorem, whereas DML 
merely overlays the classifier results with the regressor results, making 
the interpretation more challenging. Next, we will provide an intro
duction to the framework and algorithm details of PDML.

First, we align the forecast data, including precipitation forecasts and 
other meteorological forecast data, with the observation data to the 
same scale. Then, for the 20 years of available data, we divide it into 
three groups: a 12-year training set (1999–2010), a 4-year validation set 
(2011–2014), and a 4-year test set (2015–2018). The training set data is 
used to train the model, the validation set data is used to adjust the 
hyperparameters, and the test set data is used for final result evaluation.

Next, based on the observation data from the training set, we 
determined two thresholds, T01 and T12 to classify precipitation into 
three levels (level0, level1, level2). The thresholds are set individually for 
each grid. The threshold between level0 and level1 is the zero precipita
tion threshold, which is defined as follows: the daily precipitation data 
for each grid point in the corresponding forecast period is sorted in 
descending order, denoted as {a1,a2, ...,am}, then set a percentile value 
Pa and an is determined based on formula (1) (Ye et al., 2017). T01 is 
taken as the smaller value between an and 0.1, i.e., min(0.1, an). Pre
cipitation below T01 is considered as an artifact generated by interpo
lation and is treated as no precipitation occurrence. The threshold 
between level1 and level2 is the threshold between normal precipitation 
and extreme precipitation, which is defined as the 90th percentile of all 
precipitation events greater than T01 in the corresponding forecast 
period. This means that for each grid point and each different forecast 
period, two thresholds are determined separately. 

Pa =

∑n
i=1ai

∑m
i=1ai

(1) 

After processing all the data through Z-score standardization, the 
training set data is used to train the classifier and regressor separately. 
The purpose of the classifier is to identify the level of precipitation to 
which a given sample belongs. Unlike previous DML studies where the 
classifier uses deterministic output results, in PDML, we use the Softmax 
activation function in formula (2) to output the probabilities of a sample 
belonging to each level. The Softmax activation function is suitable for 
multi-class tasks and can map the output values to probability values 
that sum to 1, representing the probabilities of the classification result 
belonging to each category. Compared to deterministic classification 
results in DML, this approach not only applies to generating ensemble 
distributions but also reduces the cost of classification errors. The loss 
function used by the classifier is the cross-entropy, as shown in formula 
(3). After training, for a given sample, the classifier outputs the proba
bilities p0, p1, and p2, which represent the likelihood of the sample 
belonging to the three categories: level0, level1, and level2, respectively, 
given the ten input features. 

Softmax(z i) =
exp(z i)

∑2
j=0exp

(
z j
) (2) 

Where [z0, z1, z2] is the vector of raw outputs from the classifier, 
which can be transformed into a probability vector [p0, p1, p2] after 
passing through the Softmax activation function. 

L(y, ŷ) = −
∑2

i=0
yilog(ŷi) (3) 

Where 
[
y0, y1, y2

]
is the true label distribution, yi being either 
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0 (False) or 1 (True), and 
[
ŷ0, ŷ1, ŷ2

]
is the predicted probability dis

tribution by the model. For each sample, the smaller the loss, the more 
accurate the model’s prediction of the true class.

We have also made improvements to the single-value regressor in 
traditional DML method. We train separate regressors for the two levels 
of precipitation (level0 does not require a regressor since it represents no 
precipitation). These regressors characterize the distribution followed 
when precipitation belongs to the corresponding level. Considering that 
the Gamma distribution is suitable for representing the skewed and 
heavy-tailed characteristics of precipitation, we choose to output two 
parameters of the Gamma distribution to characterize the precipitation 
distribution (Martinez-Villalobos and Neelin, 2019). The regressors of 
each level will output the mean μ and standard deviation σ of a Gamma 
distribution, which are then transformed into the shape and scale pa
rameters of the Gamma distribution using the following formulas, thus 

generating a deterministic cumulative distribution function (CDF). 

k =
μ2

σ2, θ =
σ2

μ
(4) 

Fk,θ(x) =
1

Γ(k)

∫ x

0
tk− 1e−

t
θ
1
θk dt (5) 

Where k and θ are the shape parameter and scale parameter of the 
Gamma distribution, Γ is the Gamma function, and F is the CDF of the 
Gamma distribution.

The loss function used for training the regressor is the Continuous 
Ranked Probability Score (CRPS) loss function, whose closed-form 
expression for Gamma distribution is derived by Scheuerer and Hamill 
(2015). Since we train separate regressors for each level, only samples 
that belong to the corresponding level are included in the loss 

Fig. 2. Flowchart showing the structure of the PDML method.
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calculation, as shown in formula (6). For example, when training the 
regressor for level1, the sample losses for level0 and level2 are both zero 
and are therefore not included in the backpropagation. 

L
(
Fk,θ, y

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y
(
2Fk,θ(y) − 1

)
− kθ

(
2Fk+1,θ(y) − 1

)
−

θ

B
(

1
2
,k
)

0

if y∈ leveli
else

(6) 

Where k and θ are the Gamma distribution parameters calculated 
from the model output using formula (4), y is the observed precipitation, 
and B is the Beta function.

In the combination of classifiers and regressors, PDML derives the 
integration formula based on the law of total probability. Suppose a 
precipitation event (including zero precipitation) can be classified into n 
categories based on intensity, denoted as level0, level1, leveln− 1. Then the 
sum of the probabilities for all categories at any given time step equals 
unity, i.e: 
∑n− 1

k=0
P(y ∈ levelk) = 1 (7) 

Then, based on the total probability theorem, the probability that a 
given precipitation event has a precipitation amount equal to ŷ can be 
expressed as follows: 

P(y = ŷ) =
∑n− 1

k=0
P(y = ŷ|y ∈levelk) (8) 

In our PDML case, a three-class classification is used, and the 
resulting calculation formula is: 

P(y = ŷ) =
∑2

k=0
P(y = ŷ|y ∈levelk) (9) 

Where y ∈ level0, y ∈ level1, and y ∈ level2 represent the probabilities 
of the precipitation event belonging to zero-level precipitation (zero- 
precipitation), first-level precipitation, and second-level precipitation 
(extreme-precipitation), respectively. If we express the probability 
density in the form of a cumulative distribution, we obtain Equation 
(10): 

F(x) = p0 + p1Fk1 ,θ1 (x) + p2Fk2 ,θ2 (x) (10) 

Through the training process, we obtained a classifier that outputs 
the probability vector [p0, p1, p2], and two regressors, which output the 
Gamma distribution parameters and can calculate k1,θ1,k2,θ2. The final 
distribution obtained is a mixture of discrete (represented by p0) and 
continuous (represented by p1,k1,θ1,p2,k2,θ2) distributions, as shown in 
the example provided at the end of Fig. 2.

The above describes the overall framework of the PDML post- 
processing method. In the actual training process of classifiers and re
gressors, different deep learning algorithms can be chosen. To system
atically compare the performance differences of various neural networks 
within the PDML framework, we tested five different DL algorithms, 
including two types of recurrent neural networks: Long Short-Term 
Memory Networks (LSTM) and Gated Recurrent Unit (GRU); one type 
of convolutional neural networks: U-NET; and two simple feedforward 
neural networks: Kolmogorov-Arnold Networks (KAN) and Multi-Layer 
Perceptron (MLP). Under the PDML framework, we independently 
train the classification and regression models for each forecast period. In 
the supplementary materials Text. S1 and Fig. S1, we provided a concise 
overview of these five DL algorithms. Although we have selected only 
five common deep learning models for comparison within the PDML 
framework as benchmark experiments, PDML is a flexible architecture, 
and the choice of models is not fixed. Any supervised learning model or 
generative model that supports backpropagation can be applied within 
the PDML framework following the process outlined above.

Hyperparameters refer to the parameters that need to be set before 
training a ML or DL model, and they control the training process and 

structure of the model. Unlike model parameters (such as weights and 
biases), hyperparameters must be manually specified before training 
begins, whereas model parameters are learned automatically from the 
training data. The hyperparameter configurations of five machine 
learning algorithms are provided in the supplementary materials 
Table S1. All other hyperparameters were set to default values. Since 
most models are independently trained on different grids, performing 
hyperparameter tuning for each grid individually would incur a sub
stantial computational cost. Therefore, hyperparameter tuning was 
conducted using a grid search method applied to a few randomly 
selected grid points on lead day 1 based on experience, and then applied 
to all grid points. The five machine learning methods are all imple
mented within the PDML framework. For the sake of brevity, we will 
omit the “PDML-” prefix in the subsequent discussion and refer to the 
machine learning algorithms by their respective architectures (e.g., 
GRU, LSTM).

3.2. Statistical benchmark: CMLE-EPP

Given that the original DML method can only generate single-value 
forecasts and lacks the ability to produce ensembles, it is not consid
ered as a benchmark in this study. In response to the call of Xu et al 
(2024), we contend that when conducting research on machine 
learning-based post-processing methods for precipitation forecasts, it is 
crucial to select more advanced and state-of-the-art statistical methods 
as benchmarks, rather than opting for methods that are relatively easy to 
outperform (such as QM). Therefore, we have decided to use an 
improved Ensemble Pre-Processor (EPP), referred to as the Ensemble 
Pre-Processor by applying maximum likelihood estimation for censored 
data (CMLE-EPP), as the statistical benchmark (Li et al., 2019). The EPP 
method, developed by the U.S. National Weather Service, has shown 
substantial improvements in precipitation forecasting post-processing, 
and the enhanced version, CMLE-EPP, further augments its perfor
mance (Huang et al., 2022; Li et al., 2019; Tao et al., 2014; Ye et al., 
2017).

The EPP post-processing primarily involves the following steps: 1) 
Normal Quantile Transformation (NQT) applied to both the forecasts 
and observations; 2) Estimation of the joint distribution between the 
transformed observations and forecasts in the Normal space; 3) 
Computation of the conditional distribution of observations given the 
new forecasts, followed by the inverse NQT. The improvement in EPP- 
CMLE lies in using the correlation coefficient of the joint distribution 
(bivariate Gaussian distribution with censored data) estimated via the 
Maximum Likelihood Estimation in Normal space after the quantile 
transformation, as opposed to directly using the correlation coefficient 
between forecasts and observations in the original space. For the 
available 20 years of data, 16 years (1999–2014) are used for model 
training, with the final 4 years (2015–2018) reserved for testing, 
consistent with the PDML method. Similarly, we extract 1,000 ensemble 
members from the conditional distribution of the observations, as the 
output of this approach. We did not implement the Schaake shuffle step; 
rather, we directly utilized the ensemble forecasts for the evaluation, as 
the ordering of the ensemble members does not influence the assessment 
of the subsequent metrics. The specific steps of the CMLE-EPP algorithm 
are described in supplementary materials Text S2, with further details 
available in the original work by Li et al (2019). To maintain concise
ness, the method will be denoted as EPP in the subsequent text.

3.3. Evaluation metrics

3.3.1. Classification accuracy evaluation metrics
We first conduct a preliminary comparison of classification perfor

mance among the five PDML models using Accuracy (ACC) and Cross- 
Entropy Loss (CE Loss) as the evaluation metric. Given that our classi
fication task involves three categories, the ACC is calculated as follows: 
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ACC =

∑n
i=1I(ŷlabel = ylabel)

n
(11) 

Where ̂ylabel is the predicted label for a precipitation event, ylabel is the 
true label of the precipitation event. I denotes the indicator function 
such that I(ŷlabel = ylabel) = 1 if condition ŷlabel = ylabel is satisfied, and 
0 otherwise. n is the total number of time steps.

The range of ACC is [0, 1], where a larger value indicates more ac
curate predictions. However, it is critical to emphasize that Accuracy 
(ACC) serves only as a preliminary indicator of PDML model perfor
mance. Because the classifier must be integrated with the regressor 
through Equation (10) to generate the final postprocessed results, de
ficiencies in the classifier may be offset by a high-performing regressor, 
while classification accuracy could conversely be degraded by regressor- 
induced errors. Additionally, our use of probabilistic outputs (where 
ŷlabel = argmax([p0, p1, p2])) rather than deterministic predictions effec
tively mitigates misclassification costs when two or more class proba
bilities exhibit negligible differences. Crucially, while a high-ACC model 
may intuitively suggest robust PDML performance, even models with 
lower ACC values might achieve compensatory gains through probabi
listic uncertainty quantification and high-precision regression. Conse
quently, ACC provides only partial insight into the PDML’s holistic 
efficacy.

The calculation of CE Loss is shown in formula (15). Unlike ACC, 
which only considers whether the final prediction is correct, CE Loss 
takes into account not only whether the classification is correct but also 
the confidence of the prediction (i.e., the model’s probability output). It 
penalizes samples with high confidence but incorrect predictions. The 
range of CE Loss is [0, + ∞), where a smaller value indicates more ac
curate predictions. 

CELoss = −
1
n
∑n

i=1

∑k− 1

j=0
yijlog

(
pij

)
(12) 

Where n is the number of samples, k is the number of classes, yij is the 
true label of sample i for class j (one-hot encoded) and pijis the predicted 
probability that sample i belongs to class j.

3.3.2. Deterministic forecast evaluation metrics
Although ensemble forecasts typically capture more uncertainty in

formation, decision-makers tend to prefer deterministic (single-point) 
predictions (Y. Zhang et al., 2023). Therefore, we first evaluated the 
deterministic post-processed forecast results (using the ensemble mean). 
The evaluation metrics include the temporal correlation coefficient 
(TCC), root mean square error (RMSE), and critical success index (CSI). 
The formulas for these three evaluation metrics are as follows: 

TCC =

∑n
t=1(yt − y)(xt − x)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

t=1(yt − y)2∑n
t=1(xt − x)2

√ (13) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

t=1
(yt − xt)

2
√

(14) 

CSI =
H

H + M + F
(15) 

Where yt is the observed value at time t and xt is the forecast value at 
time t. y and x are the mean of the observed and forecasted values, 
respectively. n is the total number of time steps. H, M and F are the 
number of hits (correctly predicted events), misses (events that occurred 
but were not predicted) and false alarms (events that were predicted but 
did not occur). The 95th percentiles of multi-year daily precipitation 
forecasts and observations at each forecast lead time are used as 
thresholds to distinguish extreme precipitation events in the forecasts 
and observations respectively.

TCC primarily assesses the linear relationship between the observa
tion and the forecast, without considering absolute value discrepancies. 
Its range is [ − 1, 1], with values approaching 1 indicating a stronger 

linear association between the two. RMSE quantifies the discrepancy 
between the observation and the forecast, with values ranging from 
[0,+∞) , where values closer to 0 signify smaller errors. CSI is a metric 
used to evaluate the accuracy in detecting binary events (extreme pre
cipitation events in this study), with a range of [0,1], where values closer 
to 1 indicate a greater ability to accurately predict extreme precipitation 
events (Jolliffe and Stephenson, 2011). Unlike the widely used metrics 
probability of detection (POD) and false alarm ratio (FAR), the CSI takes 
into account both false alarms and missed events, providing a more 
balanced assessment metric.

3.3.3. Ensemble forecast evaluation metrics
For the performance evaluation of ensemble forecasts (multi-point), 

following the studies by Y. Zhang et al. (2023) and Klotz et al.(2022), we 
assess from three perspectives: overall performance, reliability, and 
sharpness. Overall performance should encompass both reliability and 
sharpness, reflecting the ensemble forecast’s overall capability in rep
resenting observations comprehensively. Reliability measures how 
consistent the provided uncertainty estimates are with respect to the 
available observations. A higher model resolution does not necessarily 
ensure greater reliability as the model should strike a balance between 
precision and accuracy, avoiding both excessive confidence (over-con
fidence) and excessive dispersion (under-confidence). Sharpness de
scribes the precision or concentration of a probabilistic prediction, 
indicating how well the predicted probability distributions correspond 
to the observations. A sharper forecast suggests narrower predicted 
uncertainties that closely match the observed data, providing a more 
accurate depiction of the true uncertainty in the predictions (Klotz et al., 
2022).

Continuous ranked probability score (CRPS) is chosen as the metric 
to evaluate overall performance because it simultaneously considers the 
calibration of the predictive distribution (whether the predictive dis
tribution covers the true values) and the sharpness (Gneiting, 2008). The 
calculation for CRPS is shown in formula (14). CRPS calculates the de
gree of match between the entire predictive distribution and the true 
value, with a range of [0, + ∞). A smaller CRPS indicates that the 
predictive distribution is closer to the true value and that uncertainty is 
controlled reasonably. If the predictive distribution is overly dispersed, 
such as having a large variance, or if the mean deviates significantly 
from the true value, the CRPS will increase. The CRPS at each grid point 
is defined as the average CRPS computed over all time steps at that 
specific grid location. 

CRPS(F, y) =
∫ ∞

− ∞
(F(x) − 1(x ≥ y) )2dx (16) 

Where F(x) is the CDF of the predictive distribution, y is the true 
observation, and 1(x ≥ y) is the indicator function for the true value 
(which is 1 when x ≥ y, and 0 otherwise).

We employ the Reliability Diagram (also referred to as Probability 
Plots) to assess the reliability between predicted probabilities and 
observed frequencies. In this diagram, the theoretical quantiles of a 
uniform distribution are plotted along the x-axis, while the proportion of 
observed values falling below the corresponding predictions is plotted 
on the y-axis. Ideally, in a perfectly reliable forecast, if an event is pre
dicted with a probability of 50 %, its observed relative frequency should 
also approximate 50 %. Consequently, data points in the reliability di
agram of a perfect forecast should align along the diagonal, indicating a 
consistent match between predicted probabilities and observed fre
quencies across different probability levels. Deviations from this 1:1 
diagonal highlight potential bias in the model. If points lie above the 
diagonal, the observed relative frequency exceeds the predicted proba
bility, suggesting an underprediction phenomenon. Conversely, if points 
fall below the diagonal, the observed relative frequency is lower than the 
predicted probability, indicating an overprediction tendency. For 
further details regarding the principles and application of reliability 
diagrams, refer to Jolliffe and Stephenson (2011) and Laio and Tamea 
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(2007).
The 50 % and 95 % percentile intervals are selected as the evaluation 

criteria for sharpness. Specifically, we measured the average Euclidean 
distance of all time steps between the 25 % and 75 % quantiles (DIS50) 
and between the 2.5 % and 97.5 % quantiles (DIS95) within the ensemble 
members. Additionally, we calculated the ratio of observed values fall
ing within the corresponding prediction intervals to the total number of 
observations, denoted as CO50 and CO95. To enhance the assessment of 
sharpness across the full ensemble, we further computed three 
commonly used metrics: mean absolute deviation (MAD), standard de
viation (SD), and variance (VAR), based on all ensemble members. For a 
sharper forecast, we expect lower values for DIS50, DIS95, MAD, SD, and 
VAR, indicating reduced dispersion and tighter predictive intervals. 
Meanwhile, higher values for CO50 and CO95 are desirable, reflecting 
better coverage of observations within the corresponding prediction 
intervals. These metrics are finally averaged over all grid points.

3.4. Interpretability analysis method: SHAP analysis

Machine learning methods have long been criticized as “black boxes” 
due to their complexity and lack of interpretability. To further enhance 
the interpretability of the PDML model, we choose to use a Post-hoc 
techniques Shapley Additive Explanations (SHAP) analysis method to 
explain the contribution of each selected feature to the output param
eters (Tripathy and Mishra, 2024). SHAP analysis is based on Shapley 
values from game theory, which are used to measure the contribution of 
each feature to the model’s prediction outcome (Lundberg and Lee, 
2017). SHAP analysis helps us understand how individual features in
fluence the model’s predictions and provides a quantitative explanation 
of the relative importance of different features. By calculating the 
contribution of each feature to the model’s output, SHAP produces a 
SHAP value. The SHAP value can be positive or negative, indicating the 
direction of the feature’s influence on the prediction (positive values 
increase the prediction, while negative values decrease it). The formula 
for calculating the Shapley value is given by equation (15). This 
analytical approach was not employed in previous DML studies because 
DML directly overlays the classifier results with the regressor results, 
making its inherent logic and generated outcomes difficult to interpret. 

ϕi =
∑

S∈N\{i}

|S|!(M − |S| − 1 )!

M!
[f(S ∪ {i} ) − f(S) ] (17) 

where N is the set of features {1,2,⋯,M}. S is a subset of the feature 
set N that does not include feature i, and |S| is the size of subset S (i.e., the 
number of features in the subset). f(S) is the model’s output when only 
using the feature set S, and f(S ∪ {i} ) is the model’s output when using 
the feature set S and feature i.

Considering that the focus of this paper is not on explainable ma
chine learning, the SHAP analysis is conducted solely to facilitate un
derstanding of how features influence the output parameters in PDML 
models. Therefore, we use the PDML-GRU model with a 1-day lead time 
as an example and perform the analysis on only two grid points.

4. Results and discussion

4.1. Classification accuracy validation

The classification ACC results of the five models are presented in 
Table 1. As shown, the RNN-based LSTM and GRU models consistently 
achieve higher accuracy across all lead times, while U-NET and KAN 
exhibit slightly inferior classification performance compared to RNN 
architectures. This also indirectly demonstrates that RNN-based models 
are better suited for classification tasks. Overall, all models except MLP 
demonstrate satisfactory classification accuracy—exceeding 0.7 for 
daily precipitation forecasts and surpassing 0.8 for accumulated pre
cipitation forecasts—a pattern that aligns with their subsequent domi
nance over MLP in comprehensive validation tests. As previously 

introduced, however, ACC should be interpreted as a only supplemen
tary metric only consider the class with maximum predicted probability. 
While class imbalance in precipitation events inevitably leads DL models 
to exhibit higher probability outputs for majority classes, this does not 
imply that minority-class probabilities are neglected in PDML. Rather, 
PDML systematically incorporates these probabilities into the regression 
framework through weighted integration, where critical minority events 
are assigned elevated weights to preserve their physical significance in 
the final prediction system. Thus, classification accuracy must be eval
uated in conjunction with regressor performance. For instance, despite 
its lower classification ACC relative to RNN-based models, U-NET 
emerges as the optimal model in accumulated-scale validation studies, 
underscoring the compensatory mechanisms enabled by its robust 
probabilistic outputs and regression components.

The evaluation results of CE Loss are presented in Table. S2 of the 
supplementary materials. These results are generally consistent with 
those of ACC, with the RNN-based model performing the best, followed 
by U-NET and KAN, while the MLP model exhibits a performance 
deviation.

4.2. Deterministic assessment

The evaluation results of average TCC, RMSE (mm/d) and CSI across 
all grids for the raw forecast and different post-processing methods are 
shown in Table 2. The best-performing metrics within the category are 
highlighted in bold. The results indicate that for all forecast periods, EPP 
and the five PMDL post-processing methods achieve significant im
provements over the raw forecast, as evidenced by higher TCC, CSI and 
lower RMSE. However, there are differences in performance across the 
various machine learning algorithms within the PDML framework. 
While it is evident that the top-performing three models consistently 
emerge from LSTM, GRU, and U-NET, the best-performing post-pro
cessing algorithm varies across different time scales.

For the TCC and RMSE of daily precipitation forecast, we found that 
for forecast periods of 1, 2, and 3 day, the RNN-based machine learning 
algorithms performed the best within the PMDL framework, with GRU 
slightly outperforming LSTM. Compared to the raw forecast, the corre
lation coefficient increased by up to 68.7 %, 69.6 %, and 71.1 %, 
respectively, while RMSE decreased by up to 44.7 %, 44.6 %, and 43.3 
%. However, for the 4-day lead, the U-NET algorithm performed the best 
within the PDML framework, with the correlation coefficient improving 
by 76.0 % and RMSE decreasing by 41.2 %. For the accumulated pre
cipitation forecast, we found that for the forecast periods of 1–7 days, 
8–14 days, and 31–60 days, the U-NET-based PDML performed the best, 
with correlation coefficients improving by 39.7 %, 126.7 %, and 102.1 
%, respectively, and RMSE reducing by 46.6 %, 44.9 %, and 49.3 %. 
LSTM performs best in the lead days 15–30, with a 132.3 % increase in 
TCC and a 48.4 % decrease in RMSE. RNN-based and U-NET algorithm 
outperformed the EPP method across all forecast periods, while other 
algorithms outperformed EPP only in specific forecast periods or per
formed worse than EPP across all forecast periods. Particularly, the MLP 

Table 1 
Classification Accuracy of daily and accumulated precipitation forecasts.

LSTM GRU UNET MLP KAN

Daily precipitation 
forecasts

Lead day 1 0.76 0.76 0.72 0.60 0.73
Lead day 2 0.76 0.76 0.72 0.60 0.73
Lead day 3 0.76 0.76 0.72 0.59 0.73
Lead day 4 0.75 0.76 0.71 0.59 0.73

Accumulated 
precipitation forecasts

Lead days 
1–7

0.82 0.82 0.80 0.61 0.82

Lead days 
8–14

0.81 0.81 0.79 0.50 0.80

Lead days 
15–30

0.86 0.86 0.86 0.48 0.85

Lead days 
31–60

0.88 0.88 0.86 0.54 0.87

S. Zhan et al.                                                                                                                                                                                                                                    Journal of Hydrology 660 (2025) 133484 

7 



model demonstrates significantly lower performance within the PDML 
framework compared to other models, although it still manages to 
improve the raw forecasts.

For the CSI of daily precipitation forecast, the RNN-based PDML 
methods perform best on lead day 1, 2, and 3, with GRU slightly out
performing LSTM, achieving maximum CSI improvements of 284.5 %, 
282.4 %, and 276.6 %, respectively. On lead day 4, U-NET performs best, 
improving CSI by 269.8 %. Across all lead times, LSTM, GRU, U-NET, 
and KAN consistently demonstrate better performance compared to EPP. 
For the accumulated precipitation forecast, U-NET performs best on lead 
days 1–7 and 8–14, while GRU and LSTM achieve the best performance 
on lead days 15–30 and 31–60, respectively. The four lead periods 
improve CSI by 208.5 %, 295.3 %, 393.0 %, and 346.7 %, respectively. 
Except for MLP, the other four PDML methods outperform EPP across all 
lead periods, while MLP also surpasses EPP during lead days 8–60. The 
significant improvement in CSI proves that PDML can effectively 
enhance the ability to predict the occurrence of extreme precipitation 
events.

In particular, we also explored the spatial features of improvement 
made by each model. The spatial distribution of TCC improvements for 
daily precipitation forecasts and accumulated precipitation forecasts are 
shown in Fig. 3 and Fig. 4, respectively. At the daily scale, we found that 
the improvements of PDML compared to EPP were most significant in 
the central and northwest regions, but relatively small in the South 
China and Tibetan Plateau regions. In South China, the daily precipi
tation characteristics are complex, and the deep learning models were 
unable to fully capture the precipitation mapping features. In contrast, 
for the Tibetan Plateau, the original forecasts performed relatively ac
curacy, and post-processing models showed limited improvement (as 
shown in Fig. S2-Fig. S3 in the supplementary materials). At the accu
mulated scale, the pattern differed. PDML showed the most significant 
improvements in the Tibetan Plateau and North China regions, with only 
the U-NET model demonstrating noticeable improvements in the central 
and South China regions. This may be due to the fact that for accumu
lated precipitation, the sliding average over each time step reduces in
ternal differences, offering limited information for RNN-based models, 
whereas the U-NET model is better at capturing spatial patterns. The 
South China region is the area most affected by the East Asian Summer 
Monsoon, especially for longer-scale subseasonal precipitation, where 
the spatial pattern of the monsoon’s northward influence is significant 
(Wang et al., 2009). The U-NET model may improve the accumulated 

precipitation forecasts in South China by capturing the spatial patterns 
of multi-scale monsoon dynamics. Similarly, the improvement in RMSE 
also exhibits similar spatial distribution patterns. Interested readers can 
refer to Fig. S4-Fig. S5 in the supplementary materials.

The same improvement pattern also appears in the CSI metric (see 
Fig. S6-Fig. S7 in the supplementary materials), with more noticeable 
improvements at the daily scale. Of course, our primary focus is on 
extreme precipitation at the daily scale, as the moving average over 
longer time scales tends to dilute the short-term concentration of 
extreme precipitation. Improvements at the daily scale are primarily 
concentrated in the central, eastern, northwest, and northeastern re
gions, while the improvements in the South China region are relatively 
insufficient. On the accumulated scale, the improvements are mainly 
concentrated in the Qinghai-Tibet Plateau, North China, and the 
Northeast region. We believe the limited improvement in accumulated 
precipitation forecasts is due to the fact that after averaging over longer 
time scales, the extreme characteristics of precipitation (such as short- 
duration, high-intensity events) become less pronounced. When placed 
on a longer time scale, these extreme features are diluted, making it 
difficult for PDML to effectively distinguish between extreme precipi
tation and general precipitation events.

To compare the seasonal differences in the post-processing perfor
mance of various models, the evaluation results of TCC and RMSE for 
four different seasons (March-May, MAM; June-August, JJA; September- 
November, SON; December-February, DJF) are presented in Table 3. We 
found that the RNN-based and U-NET models in PDML outperformed 
EPP in all seasons, with a significant improvement compared to the 
original forecast. For TCC, we observed that the improvement was 
greater in the autumn and winter seasons (SON and DJF) than in the 
spring and summer seasons (MAM and JJA), possibly because mainland 
China begins to experience the influence of monsoons during the spring 
and summer, leading to higher variability and uncertainty in precipi
tation within the season. For RMSE, the improvement was more pro
nounced in winter than in summer. Considering that the RMSE of the 
original forecast was nearly the same across all seasons, we believe this 
improvement was mainly due to the removal of systematic biases within 
the season. The relatively simpler MLP model clearly lacked sufficient 
capability and even introduced larger errors in the summer.

Table 2 
Results of deterministic evaluation metrics.

Lead Metrics RAW EPP LSTM GRU UNET MLP KAN

Daily precipitation forecasts Lead day 1 TCC 0.37 0.51 0.62 0.63 0.57 0.50 0.53
RMSE 5.81 3.56 3.26 3.22 3.63 4.70 3.53
CSI 0.07 0.19 0.27 0.28 0.24 0.18 0.21

Lead day 2 TCC 0.37 0.50 0.62 0.63 0.56 0.49 0.53
RMSE 5.83 3.56 3.28 3.24 3.65 4.74 3.54
CSI 0.07 0.19 0.27 0.27 0.22 0.18 0.21

Lead day 3 TCC 0.36 0.50 0.61 0.61 0.57 0.48 0.52
RMSE 5.82 3.58 3.32 3.3 3.65 4.82 3.56
CSI 0.07 0.18 0.26 0.26 0.23 0.17 0.20

Lead day 4 TCC 0.33 0.48 0.57 0.57 0.58 0.47 0.49
RMSE 5.84 3.63 3.44 3.47 3.46 4.66 3.65
CSI 0.07 0.18 0.23 0.23 0.24 0.16 0.19

Accumulated precipitation forecasts Lead days 1–7 TCC 0.54 0.70 0.73 0.71 0.75 0.70 0.70
RMSE 2.91 1.64 1.57 1.69 1.56 1.83 1.72
CSI 0.09 0.24 0.26 0.26 0.28 0.22 0.26

Lead days 8–14 TCC 0.28 0.60 0.62 0.61 0.63 0.59 0.59
RMSE 3.30 1.85 1.82 1.87 1.82 2.15 1.92
CSI 0.04 0.13 0.15 0.16 0.16 0.14 0.14

Lead days 15–30 TCC 0.31 0.68 0.72 0.70 0.71 0.68 0.67
RMSE 2.50 1.36 1.29 1.38 1.31 1.56 1.48
CSI 0.03 0.11 0.16 0.16 0.14 0.14 0.13

Lead days 31–60 TCC 0.39 0.75 0.79 0.76 0.80 0.76 0.72
RMSE 1.97 1.07 0.99 1.08 1.00 1.16 1.25
CSI 0.04 0.12 0.17 0.16 0.16 0.14 0.14
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4.3. Probabilistic assessment

The evaluation results of CRPS for each forecast period are shown in 
Table 4. The best-performing CRPS for each lead time are highlighted in 
bold. The average CRPS is obtained by averaging the CRPS values across 

all grid points, while the CRPS at each grid point is computed as the 
average over all time steps. As the original forecast utilized in this study 
is a control forecast, which represents a deterministic single-point pre
diction, the computation of CRPS is not applicable. Consequently, the 
EPP method remains the only viable benchmark for performance 

Fig. 3. Spatial distribution of the difference in TCC between PDML models and EPP of daily precipitation forecasts, with blue representing improvement. (a1)-(a5) 
lead day1; (b1)-(b5) lead day2; (c1)-(c5) lead day3; (d1)-(d5) lead day4. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
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evaluation. For daily forecasts, both RNN-based and U-NET structured 
PDML methods achieve superior performance compared to the EPP 
method. Specifically, at lead times of day 1, 2, 3, and 4, the CRPS can be 
reduced by up to 13.4 %, 14.2 %, 13.0 %, and 8.4 %, respectively, 
relative to EPP. For accumulated forecasts, both U-NET and LSTM show 

robust improvements compared to EPP, with a reduction in CRPS of 4.2 
%, 1.4 %, 6.0 % and 9.7 % across four lead times. MLP and KAN both 
underperform relative to EPP at accumulated scale while only KAN is 
better than EPP in daily scale. We found that although the CRPS per
formance is better with the RNN-based and U-NET models, the ranking 

Fig. 4. Spatial distribution of the difference in TCC between PDML models and EPP of accumulated precipitation forecasts, with blue representing improvement. 
(a1)-(a5) lead days1-7; (b1)-(b5) lead days8-14; (c1)-(c5) lead days15-30; (d1)-(d5) lead days31-60. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
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does not align perfectly with that of the deterministic metrics. This 
phenomenon has also been observed in similar probabilistic forecasting 
studies. The reason is that CRPS not only considers the difference in 
means but also the distance between the entire probability distribution 
and the true values (Jahangir and Quilty, 2024). Excessive ensemble 
spread can lead to a decline in CRPS, and the ensemble spread metric is 
analyzed in the subsequent Sharpness section (Table 5).

The spatial distribution of the CRPS difference between PDML and 
EPP is shown in Fig. 5 and Fig. 6. We find that at the daily scale, both the 
RNN-based and U-NET models show improvements over EPP in almost 
all regions of mainland China, with the most significant improvements 
observed in the central and eastern regions. The MLP model fails to show 
any improvement in any region, while KAN demonstrates improvements 
in most areas, except for the southwest. However, the improvement is 
much smaller compared to the more sophisticated PDML models. At the 
accumulated scale, the improvements from the PDML models are rela
tively smaller, with the improvements primarily driven by the LSTM and 
U-NET models. The improvements from both models are mainly 
distributed in the Qinghai-Tibet Plateau and North China regions, while 

U-NET shows a noticeable improvement in the central region, and LSTM 
shows a significant improvement in the southwest. In South China, both 
the RNN-based and U-NET models lack significant improvements, 
especially the RNN-based model, which even shows a large area of 
performance degradation in the coastal regions of the south. We believe 
this may be related to the previously mentioned monsoon activity, as the 
RNN-based model is not adept at capturing large-scale spatial patterns, 
and the additional information provided by accumulated precipitation 
forecasts over time steps is limited.

The CRPS for each model in different seasons is also shown in 
Table 3. We found that, compared to EPP, PDML models, except for MLP, 
generally lead to improvements at the daily scale in all seasons, which 
demonstrates the broad reliability of PDML models in generating 
probabilistic forecasts. However, at the accumulated scale, only the 
CRPS for summer shows significant improvement. Regarding this phe
nomenon, we believe it is primarily due to the fact that the calculation of 
CRPS depends on the size of the numerical probability distribution 
range. For accumulated precipitation in seasons other than summer, 
after multi-day averaging, the numerical base is relatively small, and the 
ensemble range is not as wide as in summer, making it difficult to 
observe significant improvements.

To assess the reliability of ensemble forecasts for different levels of 
precipitation, we set three different thresholds to plot the reliability 

Table 3 
Results of deterministic and probabilistic evaluation metrics for different seasons on lead day 1 and lead days 1–7.

Season Metrics RAW EPP LSTM GRU UNET MLP KAN

Lead day 1 precipitation forecasts MAM TCC 0.37 0.43 0.59 0.61 0.57 0.44 0.45
RMSE 5.81 2.91 2.58 2.54 2.65 3.60 2.88
CRPS Nan 1.05 0.88 0.87 0.90 1.33 1.02

JJA TCC 0.37 0.39 0.52 0.54 0.53 0.38 0.44
RMSE 5.83 5.27 4.94 4.88 4.98 6.84 5.23
CRPS Nan 2.12 1.91 1.89 1.85 2.89 2.04

SON TCC 0.36 0.45 0.60 0.60 0.57 0.46 0.48
RMSE 5.82 3.13 2.79 2.75 2.90 4.13 3.07
CRPS Nan 1.04 0.90 0.89 0.89 1.45 1.01

DJF TCC 0.33 0.33 0.52 0.54 0.50 0.34 0.36
RMSE 5.84 1.36 1.22 1.21 1.27 2.16 1.40
CRPS Nan 0.38 0.33 0.32 0.33 0.61 0.40

Lead days 1–7 precipitation forecasts MAM TCC 0.48 0.59 0.60 0.57 0.65 0.56 0.53
RMSE 2.52 1.27 1.25 1.43 1.24 1.46 1.37

​ CRPS Nan 0.63 0.63 0.71 0.62 0.74 0.72
JJA TCC 0.46 0.49 0.54 0.53 0.59 0.49 0.53

RMSE 4.28 2.52 2.40 2.49 2.37 2.73 2.60
​ CRPS Nan 1.31 1.22 1.20 1.22 1.48 1.40
SON TCC 0.51 0.62 0.65 0.63 0.69 0.62 0.59

RMSE 2.45 1.36 1.30 1.42 1.30 1.61 1.42
​ CRPS Nan 0.63 0.60 0.62 0.60 0.74 0.69
DJF TCC 0.46 0.48 0.47 0.45 0.55 0.42 0.41

RMSE 1.19 0.60 0.60 0.66 0.58 0.74 0.84
​ ​ CRPS Nan 0.26 0.26 0.27 0.25 0.31 0.35

Table 4 
Results of overall ensemble evaluation metrics CRPS.

Lead EPP LSTM GRU UNET MLP KAN

Daily 
precipitation 
forecasts

Lead 
day 1

1.15 1.01 1.00 1.00 1.58 1.12

Lead 
day 2

1.15 1.01 1.00 0.98 1.58 1.12

Lead 
day 3

1.15 1.03 1.02 1.00 1.60 1.13

Lead 
day 4

1.17 1.07 1.11 1.11 1.56 1.19

Accumulated 
precipitation 
forecasts

Lead 
days 
1–7

0.71 0.68 0.71 0.68 0.82 0.79

Lead 
days 
8–14

0.83 0.81 0.83 0.81 1.00 0.88

Lead 
days 
15–30

0.66 0.62 0.67 0.63 0.80 0.74

Lead 
days 
31–60

0.55 0.49 0.56 0.49 0.63 0.66

Table 5 
Sharpness statistics of daily and accumulated precipitation forecasts.

EPP LSTM GRU UNET MLP KAN

Daily 
precipitation 
forecasts

DIS50 1.91 1.81 1.77 1.19 3.64 1.92
DIS95 8.32 7.72 7.42 4.11 12.0 8.40
CO50 0.71 0.67 0.67 0.57 0.66 0.68
CO95 0.96 0.96 0.96 0.82 0.97 0.96
MAD 0.70 0.66 0.65 0.50 1.30 0.64
SD 2.41 2.28 2.19 1.15 3.59 2.45
VAR 15.21 14.27 13.46 4.83 31.40 15.62

Accumulated 
precipitation 
forecasts

DIS50 1.57 1.27 1.15 1.23 2.05 1.99
DIS95 5.06 4.06 3.88 3.72 6.35 5.84
CO50 0.62 0.55 0.55 0.55 0.62 0.66
CO95 0.97 0.94 0.92 0.93 0.98 0.98
MAD 0.70 0.55 0.48 0.55 0.83 0.79
SD 1.37 1.12 1.14 1.02 1.82 1.67
VAR 4.15 2.72 2.08 2.42 6.66 4.82
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diagram. Considering the significant variability in precipitation across 
mainland China, we flattened the observation-ensemble forecast pairs 
for all grid points into a one-dimensional array. Then, we selected the 
50th, 80th, and 95th percentiles of the observations for reliability 
assessment. The results of the reliability diagram are shown in Fig. 7. We 

found that for daily precipitation forecasts, when the threshold is set at 
the 50th percentile, the EPP method shows some overprediction at lead 
day 4, while the U-NET method exhibits underprediction in the low- 
frequency region for lead times 2, 3, and 4 days, and overprediction in 
the high-frequency region. The performance of the other methods is 

Fig. 5. Spatial distribution of the difference in CRPS between PDML models and EPP of daily precipitation forecasts, with blue representing improvement. (a1)-(a5) 
lead day1; (b1)-(b5) lead day2; (c1)-(c5) lead day3; (d1)-(d5) lead day4. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
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generally reliable, clustering around the 1:1 line. When the threshold is 
set at the 80th percentile, MLP consistently shows overprediction, while 
the other methods perform relatively reliably. At the 95th percentile 
threshold, MLP still exhibits significant overprediction, while U-NET 
shows underprediction at lead times 2, 3, and 4 days. For accumulated 

precipitation forecasts, we found that various methods exhibit overall 
more stable performance compared to daily precipitation forecasts. 
Except for the LSTM and KAN methods, which show noticeable under
prediction at the 80th percentile threshold, the other methods remain 
close to the 1:1 line in all other cases.

Fig. 6. Spatial distribution of the difference in CRPS between PDML models and EPP of accumulated precipitation forecasts, with blue representing improvement. 
(a1)-(a5) lead days1-7; (b1)-(b5) lead days8-14; (c1)-(c5) lead days15-30; (d1)-(d5) lead days31-60. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
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The reliability diagram reveals some deficiencies in the various 
PDML methods. For instance, although the U-NET method shows sig
nificant advantages in accumulated precipitation forecasts, it exhibits a 
clear inability to capture high precipitation values (95th percentile) in 
daily precipitation forecasts. This may be due to the limitations of using 
a small sample size, where the spatial convolution in the U-NET model 
leads to the model capturing precipitation forecast information at a 
larger scale, which results in insufficient ability to capture high pre
cipitation values at finer scales. At the same time, the MLP method 
shows a clear overprediction in daily precipitation forecasts. This is 
likely due to the simplicity of the model, combined with the fact that we 
did not apply a loss function specifically targeting medium-to-high 
precipitation values. This leads to a common issue in machine 
learning models, where they tend to perform well at capturing precipi
tation near the mean but lack the ability to map high-value precipitation 
effectively (Larraondo et al., 2020).

The statistical metrics for sharpness are shown in Table 4. We 
calculated the averages for the selected daily precipitation forecasts and 
accumulated precipitation forecasts across each four lead times, 
respectively. For daily precipitation forecasts, it was found that the U- 
NET architecture in the PDML method has the smallest ensemble spread, 
as evidenced by the lowest values of DIS, MAD, SD, and VAR. At the 
same time, the smaller ensemble spread also makes the U-NET PDML 
model struggle to capture a sufficient number of precipitation events. On 
the other hand, both LSTM and GRU models, while covering a similar 
number of precipitation events as EPP, exhibit smaller ensemble 
spreads, thus achieving a sharper result. Although MLP and KAN also 
manage to cover a sufficient number of precipitation events, they show 
significantly larger ensemble spreads, leading to excessive uncertainty 

in the generated results, which is less beneficial for decision-makers 
trying to gather actionable information. For accumulated precipitation 
forecasts, both the RNN-based and U-NET models show a significant 
reduction in ensemble spread compared to EPP (over a 20 % decrease), 
but the proportion of observed precipitation they cover is only slightly 
lower than EPP, by approximately 10 %. This also reflects the 
improvement in the general performance metrics CRPS.

5. Interpretability and feature contributions

The two grid points randomly selected in this study are 117◦E 29◦N 
and 84◦E 39◦N, with the former located in the humid region of south
eastern China and the latter in the arid region of the northwest. The 
SHAP analysis results for the PDML-GRU regression model at these two 
grid points are shown in Fig. 8. The SHAP values for the mean output 
directly reflect the magnitude of the features (introduced in Section 2.2) 
influencing the post-processed precipitation, while the SHAP values for 
the variance output indicate the uncertainty of the post-processed pre
cipitation, i.e., the ensemble spread. At both grid points, the original 
precipitation forecasts make a positive contribution to both the mean 
and standard deviation of the post-processed precipitation outputs. 
When the original precipitation forecast is high, the PDML output tends 
to give larger mean and standard deviation values. It was also observed 
that the humidity forecast inputs have a significant impact on the PDML 
model’s output. Similar to the original precipitation forecast, SH850 
makes a positive contribution to both the mean and standard deviation 
of the output precipitation, while the contributions of SH850 and SH500 
exhibit greater uncertainty, with performance differences observed at 
each level. For level1 precipitation, temperature forecasts have a 

Fig. 7. Reliability diagrams of various post-processed ensemble forecasts at three different thresholds (50th percentile, 80th percentile, and 95th percentile). (a1-c1), 
(a2-c2), (a3-c3), and (a4-c4) represent the reliability diagrams of four daily precipitation forecasts at the three thresholds; (d1-f1), (d2-f2), (d3-f3), and (d4-f4) 
represent the reliability diagrams of four accumulated precipitation forecasts at the three thresholds. The results in this figure are calculated by flattening data of all 
grids into one-dimensional array.
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negative contribution to both the mean and standard deviation of the 
precipitation output, with a more prominent negative contribution 
observed for T850. For level2 precipitation, the impact of temperature 
forecasts is relatively smaller. In the 117◦E 29◦N model, T200 has a clear 
negative contribution, whereas in the 84◦E 39◦N model, it shows a 
completely positive contribution to the mean output. The overall 
contribution of geopotential height is relatively small. For level1 pre
cipitation mean, GH850 and GH500 show a negative contribution, while 
GH200 has a positive contribution at both locations. For level2 precipi
tation mean, GH850 is the only one with a noticeable negative contri
bution, and GH500 and GH200 have smaller contributions, with varying 

directions of impact.
Fig. S8 in the supplementary materials shows the SHAP analysis re

sults for the classification model. We found that both the original pre
cipitation forecast and humidity are the most significant features 
influencing the model. Both have a clear positive impact on p2 and a 
negative impact on p0. Additionally, for geopotential height and tem
perature, although the direction of influence varies across regions, a 
common characteristic is that the forecasts at 850 hPa and 500 hPa have 
a much stronger impact than those at 200 hPa. This is because 200 hPa is 
near the top of the troposphere, and its influence on precipitation for
mation is relatively minor.

Fig. 8. SHAP values of each variable for the output of the PDML-GRU regression model at the grid points 117◦E 29◦N and 84◦E 39◦N. (a)-(d) display the SHAP values 
for the mean (e) and standard deviation (σ) of level1 precipitation output and level2 precipitation output at 117◦E 29◦N, respectively. (e)-(h) correspond to the SHAP 
values for the grid point at 84◦E 39◦N. The color mapping represents the magnitude of the feature values.
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5.1. Comparison with existing studies, limitations, and future work

Compared to existing DML models, our PDML approach extends its 
application scope from precipitation product correction to precipitation 
forecast post-processing, thereby demonstrating its feasibility in S2S 
forecast post-processing. Methodologically, we advance the framework 
from a binary classification task to a multiclass classification problem, 
while simultaneously transitioning from deterministic forecast outputs 
to ensemble forecast generation (Lei et al., 2022; Ling Zhang et al., 2021; 
Lyu and Yong, 2024; Xiao et al., 2022). This modification not only fa
cilitates uncertainty quantification but also incorporates an additional 
regression task specifically designed for extreme precipitation events. To 
demonstrate the improvement of PDML compared to DML, we con
ducted an additional comparison using the LSTM model across 8 cor
responding forecast periods. Considering that DML models can only 
generate deterministic forecasts, we selected only the deterministic 
evaluation metrics for the comparison. The results are shown in Fig. 9. 
After comparing metrics, we found that compared to DML, PDML 
showed significant improvements in all metrics at the daily scale, 
especially in CSI, which demonstrates that the additional incorporation 
of extreme precipitation classification enhances the ability to identify 
extreme precipitation events. At the accumulated scale, however, PDML 
did not yield any significant improvement over DML. We believe this 
may be due to the smoothing effect of the weekly sliding average, which 
simplified the mapping relationships, making more complex models 
prone to overfitting. However, despite the lack of additional improve
ments in deterministic metrics at this scale, PDML still holds value in 
quantifying uncertainty ranges, which is of significant importance for 
decision-makers in water resource management.

Our regression approach is analogous to that of Li et al.(2022) and Ji 
et al.(2022). Besides, we have omitted the censored parameters by 
introducing an additional classification task for no precipitation. 
Moreover, we place enhanced emphasis on extreme precipitation events. 
By explicitly addressing extreme events, the proposed approach en
hances their detectability, which is further substantiated by the 
observed improvement in CSI. The multiclass approach also provides a 

clear direction for the further development of PDML. Due to limitations 
in both the scope of this paper and computational efficiency, only a 
three-class framework was employed. Future research will explore how 
to set up classifications and whether increasing the number of classes 
can further enhance performance.

From a model comparison perspective, we compared a wide range of 
deep learning (DL) models, including RNN-based, U-NET, MLP, and the 
most recent KAN model, in contrast to prior DML studies. Our findings 
reveal that both RNN-based and U-NET models perform the best within 
the PDML architecture. The RNN-based model is more suitable for daily 
precipitation forecasts, while the U-NET model excels in accumulated 
precipitation forecasts. We believe that this typical difference is caused 
by the timescale and the internal structure of the model. LSTM and GRU 
are trained on a grid-by-grid basis strategy, considering only the feature 
information of each grid and aggregating and correcting it from a 
timescale perspective. For daily scale data, forecast errors in time are 
more common, and therefore RNN-based models are better at post- 
processing such temporal biases. For accumulated scale data, since the 
data has inherently undergone at least a 7-day moving average, the 
differences in the data at each time step are small, and the information 
gain provided is limited. Additionally, time errors are diluted, pre
venting the RNN-based model from fully utilizing its time bias correction 
ability. Although the U-NET model does not consider temporal sequence 
information, it captures additional spatial information. Especially for 
accumulated scale data, where the time series provides limited infor
mation, spatial biases in the forecast (such as relative shifts in rainfall 
bands) are more likely. The U-NET model can effectively correct these 
spatial biases, something that the RNN-based model cannot address. 
This is the main reason why the U-NET model outperforms the RNN- 
based model on the accumulated scale. Besides, from the Sharpness 
metric, we observe that the ensemble divergence of the U-NET model is 
generally smaller, which is consistent across both daily scale and accu
mulated scale. This is actually related to the training method of the U- 
NET model. U-NET is a spatial convolutional model, and its optimization 
process is global, with the loss averaged across all grid points. In this 
context, although the eastern moist regions generally receive more 

Fig. 9. Box plots of comparison of deterministic evaluation metrics between PDML-LSTM and DML-LSTM for each forecast period, with each value representing a 
grid point. (a1)-(b1) TCC, (a2)-(b2) RMSE, (a3)-(b3) CSI.
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rainfall than the northwestern arid regions, their ensemble divergence is 
reduced during optimization to promote the overall loss decrease. This 
ensures global optimality rather than local optimality, resulting in 
smaller ensemble divergence for the U-NET model. In contrast, the RNN- 
based model follows a grid-point-wise training strategy, where each 
model only considers local optimization. This allows the eastern moist 
regions to generate larger ensemble divergences, while the northwestern 
arid regions produce smaller ensemble divergences, forming a clear 
distinction from the U-NET model. Fig. 10 illustrates the spatial distri
bution of Dis95 on lead day 1. In the Bohai Sea region, the ensemble 
divergence formed by the RNN-based model is significantly greater than 
that of the U-NET model. On the accumulated scale, the RNN-based 
model also exhibits a decrease in ensemble divergence, which may be 
related to the limited information provided by the time series, as 
mentioned earlier. Both models outperform the state-of-the-art statisti
cal model EPP in their suitable lead times. Additionally, while the KAN 
model has shown impressive performance in runoff forecasting, we 
observed that in the PDML framework, it does not surpass the more 
complex RNN-based and U-NET models when applied to precipitation 
forecasting (Granata et al., 2024). We suggest that replacing the fully 
connected layers with KAN layers in RNN-based and U-NET architec
tures could be a promising avenue for enhancing the original KAN 
model, leading to the development of RNN-KAN and U-NET-KAN 
models. Another potential direction is to combine RNN-based models 
with U-NET models, thereby capturing the relationships between fea
tures and targets from both spatial and temporal perspectives. Further
more, the Conv-LSTM model has been successfully applied to radar 
precipitation forecasting tasks, and we believe future research could 
explore integrating it into the PDML framework (Shi et al., 2015).

One limitation in terms of model selection is that it does not consider 
the integration of different models within the PDML framework. The 
usage and validation of each PDML model are conducted independently. 
The classifiers and regressors in PDML can be a combination of different 
models, such as using RNN-based models that are better suited for 
classification tasks as classifiers, and U-Net models, which can capture 
spatial relationships, or other more advanced model architectures as 
regressors. Although this approach has been implemented in previous 
DML studies, there is no rigorous comparative experiment to demon
strate the effectiveness of such integration. Given that the main goal of 
this study is to propose the PDML framework, with the five commonly 
used DL models serving merely as baseline experiments to test the val
idity of PDML, we do not aim to achieve the most effective PDML model 
combination in this study. Testing the integration of models and other 
DL models will be explored in future research.

In terms of feature selection and model training, one of our limita
tions is the failure to account for the impact of climate change trends. 
Given the large temporal span of our study, covering 20 years, the 

influence of climate change on the mapping relationships cannot be 
ignored. In future research, we consider two potential approaches to 
address this issue. First, we could incorporate year and day of the year as 
additional auxiliary features into the PDML model, allowing the deep 
learning model to capture climate trends autonomously. Second, we 
could manually detrend the data before feeding it into the PDML model 
to remove the effects of climate change. However, we are also concerned 
that this approach might degrade data quality and introduce erroneous 
mappings.

The limited data availability is also a potential drawback of this 
method. As a sample-sensitive approach, deep learning methods, after 
classifying and dividing different sub-samples, lead to a reduction in the 
representativeness of the samples in each category, making it difficult 
for PDML to effectively capture the mapping relationship between 
forecasts and observations. This could pose challenges for regions with 
limited historical forecasting data. Additionally, the unreasonable 
threshold division can affect the quality of the data. Although we used a 
relative threshold method, the boundaries of the relative threshold may 
not be suitable for all regions. For example, in the South China region, 
due to the excessively humid climate conditions, the threshold we set 
may not be high enough, which could lead to unclear boundaries be
tween extreme precipitation and general precipitation events, affecting 
proper identification. In the future, we will further explore methods to 
improve the threshold setting.

For feature importance analysis and model interpretability, we 
conducted SHAP analysis at two grid points, considering the computa
tional cost. This approach has, to some extent, helped us understand the 
feature selection process and the internal logic of the model. However, 
the selected features are fixed, and there is a lack of comparative studies 
that explore other features and different combinations of features (Lin 
et al., 2023). Due to limitations in computational cost, we were unable to 
fully address this in the present study. But in future research, we believe 
that a more comprehensive interpretability analysis is essential, 
including more sophisticated feature selection and the exploration of 
their applicable spatial patterns.

Additionally, we compared the computation time of different PDML 
models relative to EPP, and the results are presented in Text. S3 and 
Fig. S9 of the supplementary materials. The results indicate that the 
PDML method has a significantly lower computation time compared to 
the EPP method, with the time required being more than an order of 
magnitude smaller. Among the PDML algorithms, the U-NET structure is 
the most time-efficient using only about 1/200 of computation time cost 
by EPP, as it is based on a convolutional architecture, where all sites are 
trained simultaneously and share a single model.

Fig. 10. Spatial distribution of the Dis95 for lead day 1 precipitation forecasts. (a) and (b), (c) are derived from the LSTM, GRU, and U-NET models, respectively.
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6. Conclusions

In this study, we propose a novel Probabilistic Double Machine 
Learning (PDML) method for S2S precipitation forecast post-processing 
and tested it under the new framework across eight different lead times, 
including four daily precipitation forecasts (lead day 1, 2, 3 and 4) and 
four accumulated precipitation forecasts (lead day 1–7, 8–14, 15–30 and 
31–60). This new PDML architecture can quantify uncertainty by 
generating ensemble forecasts and enhance extreme precipitation fore
casting ability by considering extreme precipitation events in both the 
classifier and regressor. We compared five different deep learning al
gorithms with one statistical algorithm, EPP. Interpretability and feature 
contribution analysis are also provided to gain a deeper understanding 
of the impact of each feature on the PDML. The key conclusions are as 
follows: 

1) The PDML algorithm significantly improves the original forecasts for 
both deterministic forecasts and ensemble forecasts. On average, it 
achieves up to 85.8 % improvement in the TCC across all lead times 
and reduces RMSE by 45.3 %. In terms of extreme precipitation 
forecasting capabilities, the CSI (Critical Success Index) improves by 
an average of 294.6 %. For ensemble forecasts, the combined eval
uation metrics of reliability and sharpness, measured by CRPS, show 
an 8.6 % reduction. When selecting the sophisticated model, the 
PDML model can also improve performance compared to the statis
tical EPP algorithm. At the daily scale, the improvement of PDML 
compared to DML is more significant.

2) From the comparison of DL models under PDML framework, for daily 
precipitation forecasts, we recommend using the RNN-based PDML 
model. For accumulated precipitation forecasts, the U-NET-based 
PDML model is preferred.

3) From the perspective of feature contribution and model interpret
ability, we found that, regardless of whether it is a classification or 
regression model, the original precipitation forecast and humidity 
forecast are the most influential input variables. Additionally, the 
importance of forecast variables at the 850 hPa and 500 hPa pressure 
levels is generally higher than that of forecast variables at the 200 
hPa pressure level.

4) From the perspective of computational cost, the PDML model 
generally has a much lower computational cost than the EPP algo
rithm. The PDML-U-NET model, which has the lowest computational 
cost, requires only 1/200 of the computation time compared to the 
EPP algorithm.
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M., 2024. KAN: Kolmogorov-Arnold Networks. arXiv: 2404.19756. Doi: 10.48550/ 
arXiv.2404.19756.

Lundberg, S., Lee, S.-I., 2017. A Unified Approach to Interpreting Model Predictions. 
arXiv preprint. arXiv:1705.07874. Doi: 10.48550/arXiv.1705.07874.

Luo, Z., Zhang, S., Shao, Q., Wang, L., Wang, S., Wang, L., 2024. A new method to 
improve precipitation estimates by blending multiple satellite/reanalysis-based 
precipitation products and considering observations and terrestrial water budget 
balance. J. Hydrol. 635, 131188. https://doi.org/10.1016/j.jhydrol.2024.131188.

Lyu, Y., Yong, B., 2024. A Novel Double Machine Learning Strategy for Producing High- 
Precision Multi-Source Merging Precipitation Estimates Over the Tibetan Plateau. 
Water Resour. Res. 60, e2023WR035643. https://doi.org/10.1029/2023WR035643.

Lyu, Y., Zhu, S., Zhi, X., Ji, Y., Fan, Y., Dong, F., 2023. Improving subseasonal-to-seasonal 
prediction of summer extreme precipitation over southern china based on a deep 
learning method. Geophys. Res. Lett. 50, e2023GL106245. https://doi.org/10.1029/ 
2023GL106245.

Lyu, Y., Zhu, S., Zhi, X., Wang, J., Ji, Y., Fan, Y., Dong, F., 2024. Significant advancement 
in subseasonal-to-seasonal summer precipitation ensemble forecast skills in China 
mainland through an innovative hybrid CSG-UNET method. Environ. Res. Lett. 19, 
074055. https://doi.org/10.1088/1748-9326/ad5577.

Manzanas, R., Gutiérrez, J.M., Bhend, J., Hemri, S., Doblas-Reyes, F.J., Torralba, V., 
Penabad, E., Brookshaw, A., 2019. Bias adjustment and ensemble recalibration 
methods for seasonal forecasting: a comprehensive intercomparison using the C3S 
dataset. Clim. Dyn. 53, 1287–1305. https://doi.org/10.1007/s00382-019-04640-4.

Mao, Y., Sorteberg, A., 2020. Improving radar-based precipitation nowcasts with 
machine learning using an approach based on Random Forest. Weather Forecast. 35, 
2461–2478. https://doi.org/10.1175/WAF-D-20-0080.1.

Martinez-Villalobos, C., Neelin, J.D., 2019. Why Do precipitation intensities tend to 
follow gamma distributions? J. Atmospheric Sci. 76, 3611–3631. https://doi.org/ 
10.1175/JAS-D-18-0343.1.

Moghaddam, D.D., Rahmati, O., Panahi, M., Tiefenbacher, J., Darabi, H., Haghizadeh, A., 
Haghighi, A.T., Nalivan, O.A., Tien Bui, D., 2020. The effect of sample size on 
different machine learning models for groundwater potential mapping in mountain 
bedrock aquifers. CATENA 187, 104421. https://doi.org/10.1016/j. 
catena.2019.104421.

Ni, L., Wang, D., Singh, V.P., Wu, J., Wang, Y., Tao, Y., Zhang, J., 2020. Streamflow and 
rainfall forecasting by two long short-term memory-based models. J. Hydrol. 583, 
124296. https://doi.org/10.1016/j.jhydrol.2019.124296.

Oliveira, E.C.L.D., Nogueira Neto, A.V., Santos, A.P.P.D., Da Costa, C.P.W., Freitas, J.C.G. 
D., Souza-Filho, P.W.M., Rocha, R.D.L., Alves, R.C., Franco, V.D.S., Carvalho, E.C.D., 
Tedeschi, R.G., 2023. Precipitation forecasting: from geophysical aspects to machine 
learning applications. Front. Clim. 5, 1250201. https://doi.org/10.3389/ 
fclim.2023.1250201.

Ortiz-García, E.G., Salcedo-Sanz, S., Casanova-Mateo, C., 2014. Accurate precipitation 
prediction with support vector classifiers: a study including novel predictive 
variables and observational data. Atmospheric Res. 139, 128–136. https://doi.org/ 
10.1016/j.atmosres.2014.01.012.

Rivoire, P., Martius, O., Naveau, P., Tuel, A., 2023. Assessment of subseasonal-to- 
seasonal (S2S) ensemble extreme precipitation forecast skill over Europe. Nat. 
Hazards Earth Syst. Sci. 23, 2857–2871. https://doi.org/10.5194/nhess-23-2857- 
2023.

Scheuerer, M., Hamill, T.M., 2015. Statistical postprocessing of ensemble precipitation 
forecasts by fitting censored, shifted gamma distributions. Mon. Weather Rev. 143, 
4578–4596. https://doi.org/10.1175/MWR-D-15-0061.1.

Scheuerer, M., Switanek, M.B., Worsnop, R.P., Hamill, T.M., 2020. Using artificial neural 
networks for generating probabilistic subseasonal precipitation forecasts over 
California. Mon. Weather Rev. 148, 3489–3506. https://doi.org/10.1175/MWR-D- 
20-0096.1.

Senocak, A.U.G., Yilmaz, M.T., Kalkan, S., Yucel, I., Amjad, M., 2023. An explainable 
two-stage machine learning approach for precipitation forecast. J. Hydrol. 627, 
130375. https://doi.org/10.1016/j.jhydrol.2023.130375.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W., Woo, W., 2015. Convolutional LSTM 
Network: A Machine Learning Approach for Precipitation Nowcasting. arXiv 
preprint. arXiv:1506.04214. Doi: 10.48550/arXiv.1506.04214.
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