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6D 2006 2 28 Tab. 2 Monthly Mean Value of Upstream and
Downstream Boundary Conditions
2 (m?®/s) C) (m?/s)
( 2) 3 455 12. 4 759
° 4 498 15.0 684
3 5 779 17.1 798
( 2), 6 2 634 17.8 1910
7 2 598 19.9 2 481
3
Tab.3 Monthly Mean Value of Free Water Surface Boundary Conditions
(hPa) C) % (mm/d) (mm/d) (W/m?) (G (m/s)
3 875.8 22.1 28 0.2 3.4 224.9 2.6 2.6
4 875. 2 25.0 30 0.3 4.0 243.3 4.6 2.9
5 877.2 24,4 48 1.9 4.3 225.8 5.9 2.5
6 874.0 26. 2 61 6.3 4.3 204.5 8.0 2.2
7 873.3 26.4 68 10. 2 5.0 234.7 8.0 2.2
4
3 Tab.4 Parameter Values of Different Schemes
1 2 3 4
3.1 FF 0.1 0.9 0.1 0.1
SF 0.2 0.2 2.8 0.2
' Ss 0.025 0.025 0.025 0.12
EFDC , 3 1 2
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SS(1/m), . 0 17C,
FF 0.0~1.0,SF 1/5~1/0. 35, 5 1 4
SS 1/40~1/7. 9, 3 , ,
° SS ) )
o 2. 4°C, 5
: 3 ( b . 36T 0.4°C,
FF( 2).SF( 3)  SS( 3.2
4y, 3 o
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WATER TEMPERATURE MODELING AND INFLUENCES
OF WATER TEMPERATURE STRATIFICATION OF
ERTAN RESERVOIR BASED ON EFDC

GAN Yamjun', LI Lan*, WU Jian’, YE Ai-zhong'
(1. College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China;
2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;

3. Yellow River Engineering Consulting Co. ,Ltd. ,Zhengzhou 450003, China)

Abstract: EFDC model was used to simulate water temperature of the Ertan reservoir from February 28th
to July 31th,2006. Traverse direction of the reservoir was generalized into a grid and the average width was
400m;longitudinal direction of the reservoir was divided into 139 sections and the grid spacing ranged from
about 500 m to 1200 m;vertical direction of the reservoir was divided into 40 layers. Thus, the total num-
ber of the research domain grids was 5 560. In order to improve simulation ability of the EFDC model, a
preliminary exploration of the uncertainties related to model parameters was made. By analyzing parameters
related to heat exchange and transfer, we have found that, surface water temperature would increase and
bottom water temperature would decrease, when the value of proportion of fast wave in shortwave radiation
(FF) or coefficient of shortwave radiation slowly attenuated in water (SS) increased. On the other hand,
the coefficient of shortwave radiation rapidly attenuated in water (SF) had no significant influence on wa-
ter temperature, Then,parameters were calibrated by comparing the simulated and observed water tempera-
ture at different reservoir sections in different time period. The modeling results indicated that the EFDC
model could well reveal water temperature stratification structure and their development processes of large
deep-reservoir. On this basis, the law of water temperature stratification was analyzed. Water temperature
stratification phenomenon could be observed in all the months during the simulation period. Stratification
structure was simple and a single thermocline was appeared in March. And temperature gradient of the sin-
gle thermocline gradually became larger from April to June and finally a double thermocline was formed in
July. Surface water temperature significantly increased from March to July due to the influences caused by
shortwave radiation and air temperature (from about 14°C to 25°C). Meanwhile,bottom water temperature
changed little during this period because the heat was difficult to transfer from surface to bottom (around
11°C). It also could be seen that,temperature of discharged water after the construction of dam was differ-
ent from the natural river water temperature at the same place. Temperature of discharged water was high-
er than natural river water temperature in March,June and July;and lower than natural river water temper-
ature in April and May. Therefore, the reasons and influences of water temperature difference due to the
construction of dam were analyzed. By doing this,we attempt to provide some scientific basis for water in-
take design and operation management of reservoir in order to reduce the influences of water temperature

stratification and protect the ecological environment and aquatic biodiversity of the downstream river,

Key words: EFDC model; Ertan reservoir; reservoir water temperature; water temperature stratification



